Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonsoir, je suis en terminal générale et j'ai un DM a rendre, mais je galère pas mal sur des question a priori basique, si quelqu'un pouvais m'aider merci.
Etudier les variation de la fonction f(x) = 3 - (x+1)/e^x pour x appartient [0;+l'infini[
Si on pouvais deja m'aider sur ca sa serai génial
et aussi sinon, le deuxieme question est:
Monter que l'équation f(x) = x possède une unique solution alpha sur [0;+l'infini[
Voila merci :)

Sagot :

Réponse :

Explications étape par étape

1)f(x)=3-(x+1)/e^x sur [0;+oo[

limites

si x=0   f(x)2

si x tend vers +oo (x-1)/e^x tend vers 0 (croissances comparées) donc f(x) tend vers 3

la droite d'équation y=3 est une symptôte horizontale.

Dérivée tu l'as calculée f'(x)=x/e^x

Tableau de signes de f'(x) et de variationd de f(x)

x   0                                                      +oo

f'(x)...............................+..................................

f(x)..2......................croissante........................+oo

2)

f'(0)=0 on a donc une tangente horizontale au point (0;2)

Dérivée seconde: f"(x)=(1-x)/e^x elle s'annule pour x=1 ; à partir du point (1;f(1)) la courbe est concave sur ]1; +oo[ , monotone et limitée par l'asymptote y=2 .

f(1) étant >1  la droite y=x a un et un seul point d'intersection "alpha" tel que f(alpha)=alpha

f(2,5)=2,7  la courbe est au dessus de la droite y=x

f(3)=2,8 la courbe est en dessous de la droite  y=x

donc2,5<alpha<3  

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.