Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonsoir ! La consigne est: Vrai ou Faux ?
Merci d'avance !


Bonsoir La Consigne Est Vrai Ou Faux Merci Davance class=

Sagot :

Bonjour

Introduction

Pour voir si cette affirmation est vraie, on va prendre le triangle ABC et trouver quelle valeur doit avoir [tex]x[/tex] pour que le triangle soit rectangle.

Pour ce faire, on va utiliser la Réciproque du théorème de Pythagore qui nous dit que:

Si le carré du côté le plus long(*) est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle.

(*) "le côté le plus long", il s'agit en soit de l'hypoténuse mais il ne peut pas porter ce nom tant qu'on a pas réussi à prouver qu'il s'agissait d'un triangle rectangle.

Calculs

Donc on va commencer par poser les valeurs pour effectuer la réciproque:

[tex](x+1)^{2} = 2^{2} + (x-2)^{2}[/tex]

On va calculer pour trouver la valeur que doit avoir [tex]x[/tex] pour que ce calcul soit bien et donc que le triangle soit rectangle [par la réciproque du théorème de Pythagore].

[tex](x+1)^{2} = 2^{2} + (x-2)^{2}\\[10pt](x^{2}+2x+1) = 2^{2} + (x-2)^{2}\\[10pt](x^{2}+2x+1) = 2^{2} + (x^{2} - 4x+4)\\[10pt]x^{2}+2x+1 = 2^{2} + x^{2} - 4x+4\\[10pt]x^{2}- x^{2} +2x+1 = 4 - 4x+4\\[10pt]2x+1 = 8 - 4x\\[10pt]2x +4x = 8 -1\\[10pt]6x = 7\\[10pt]x= \dfrac{6}{7} = 1,16[/tex]

Maintenant qu'on a trouver le [tex]x[/tex], pour s'assurer de ne pas avoir commis d'erreur, on le replace dans l'équation de la réciproque du théorème de Pythagore

[tex](x+1)^{2} = 2^{2} + (x-2)^{2}\\[8pt](\frac{7}{6}+1)^{2} = 2^{2} + (\frac{7}{6}-2)^{2}\\[8pt](\frac{13}{6})^{2} = 4 + (-\frac{5}{6})^{2}\\[8pt]\frac{169}{36} = 4 + \frac{25}{36}\\[8pt]\frac{169}{36} = \frac{36\times4}{36} + \frac{25}{36}\\[8pt]\frac{169}{36} = \frac{144}{36} + \frac{25}{36}\\[8pt]\frac{169}{36} = \frac{169}{36} = Vrai[/tex]

Voilà, donc là on a prouver par a + b, en se permettant même une vérification, que le triangle ABC est rectangle si [et seulement si] le [tex]x[/tex] est égal à 1,16.

Réponse

En prenant en compte l'instruction du point 3. (Soit [tex]x[/tex] un nombre réel > ou = à 2) on peut confirmer que l'affirmation dit vrai.

Voilà tout, j'espère que j'aurais assez développé les calculs pour que tu puisses bien comprendre et p-ê le refaire chez toi, si tu as mal compris quelque chose tu peux me demander dans les commentaires ;)

Bonne journée

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.