Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

salut tout le monde j'ai un petit soucis avec un exo de maths et si vous pouviez m'aider je vous en serais très reconnaissante soit f définie sur R* par f(x)=x racine de (1+ (1/x^2)) de courbe représentative Cf 1) démontrer que pour tout réel x n'est pas égal a o , f(-x)=-f(x) que peut on dire de la courbe Cf ? on appelle g la restriction de f à l'intervalle ]0;+ l'infini[ et Cg sa courbe représentative 2) déterminer les limites de g en 0 et en + l'infini

Sagot :

f(-x) c'est (-x)rac(1+1/(-x)²) or (-x)²=x² donc f(-x)=-f(x) : le point de la courbe d'abscisse -x est le symétrique, par rapport à l'origine, du point d'abscisse x de la courbe : celle-ci est symétrique par rapport à O

 

lim de g(x) quand x->0+ : c'est la limite de x(1/x)rac(x²+1) donc de rac(x²+1) qui tend vers 1

 

limite de g(x) quan x-> +infini, selon le même calcul, +infini

 

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.