Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

salut tout le monde j'ai un petit soucis avec un exo de maths et si vous pouviez m'aider je vous en serais très reconnaissante soit f définie sur R* par f(x)=x racine de (1+ (1/x^2)) de courbe représentative Cf 1) démontrer que pour tout réel x n'est pas égal a o , f(-x)=-f(x) que peut on dire de la courbe Cf ? on appelle g la restriction de f à l'intervalle ]0;+ l'infini[ et Cg sa courbe représentative 2) déterminer les limites de g en 0 et en + l'infini

Sagot :

f(-x) c'est (-x)rac(1+1/(-x)²) or (-x)²=x² donc f(-x)=-f(x) : le point de la courbe d'abscisse -x est le symétrique, par rapport à l'origine, du point d'abscisse x de la courbe : celle-ci est symétrique par rapport à O

 

lim de g(x) quand x->0+ : c'est la limite de x(1/x)rac(x²+1) donc de rac(x²+1) qui tend vers 1

 

limite de g(x) quan x-> +infini, selon le même calcul, +infini

 

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.