Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
bjr
1. Démontrer que pour tout réel x, on a :
(x - 2)² (x + 1) = x³ – 3x² + 4.
(x - 2)²(x + 1) = (x² - 4x + 4)(x + 1)
= x³ + x² -4x² -4x + 4x + 4
= x³ -3x² + 4
2. En déduire les solutions de l'équation x³ = 3x² - 4. (1)
l'équation (1) est équivalente à
x³ - 3x² + 4 = 0
soit en remplaçant x³ -3x² + 4 par (x - 2)² (x + 1) [question 1) ]
à
(x - 2)² (x + 1) = 0 équation produit nul
<=> (x - 2)² = 0 ou x + 1 = 0
x = 2 ou x = -1
S = {-1 ; 2}
Bonjour :)
Explications étape par étape:
[tex] (x-2)² (x+1) = \Rightarrow
\newline
(x²-4x-4)(x+1) =
x³-3x²+4 [/tex]
Les Solutions :
[tex] (x-2)² (x+1) = 0
\Leftrightarrow [/tex]
(x-2)² = 0 ou x+1 = 0 [/tex]
D' où x = 2 ou x = -1
S = {-1; 2}
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.