Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour pouvez m'aider à faire mon exercice de math svppp​

Bonjour Pouvez Maider À Faire Mon Exercice De Math Svppp class=

Sagot :

Bonjour,

A)1)

Nous avons l'équation différentielle suivante :

[tex]y'=-0,124y[/tex]. Les solutions de cette équation sont sous la forme [tex] f(x)=Ae^{-0,124x}, A \in \mathbb{R} [/tex] une constante à déterminer selon les conditions initiales.

2) [tex] f(0)=15,3 \iff Ae^{-0,124\times0}=15,3 \iff A=15,3 [/tex]. Donc la solution telle que [tex] f(0)=15,3 [/tex] est [tex] f(x)=15,3e^{-0,124x} [/tex].

B)1)

La fonction [tex] f [/tex] est dérivable sur [tex] \mathbb{R}^{+} [/tex] comme composé de fonctuons derivables sur cet ensemble. On a :

[tex] \forall t \in \mathbb{R}^{+}, f'(t)=-0,124\times15,3\times e^{-0,123t}=-1.8972e^{-0,123t}<0 [/tex]. Donc la fonction est decroissante sur [tex] \mathbb{R}^{+} [/tex].

2) La limite de f en [tex] +\infty [/tex] est la limite de [tex] e^{-0,123t} [/tex] en l'infini, donc 0. Donc, après un temps suffisamment long, le carbone 14 sera totalement désintégré.

C)1) Il nous suffit de resoudre l'équation : [tex] f(t)=7,27 [/tex]. On a :

[tex]15,3e^{-0,123t}=7,27 \iff e^{-0,123t}=\frac{7,27}{15,3} \iff t=\frac{ln(\frac{7,27}{15,3})}{-0,123}=6,05[/tex]. [tex] t [/tex] étant exprimé en milliers d'années, on peut donc estimer l'âge de ces fragments à [tex] 6000 [/tex] ans.

2) Il nous suffit de resoudre [tex] f(t) \leqslant 0,03f(0) [/tex]. On a :

[tex] 15,3e^{-0,123t} \leqslant 0,003\times15,3 \iff e^{-0,123t} \leqslant 0,003 \iff -0,123t \leqslant ln(0,003) [/tex] car la fonction logarithme neperien est strictement croissante sur [tex] \mathbb{R}^{+} [/tex].

On a donc : [tex] t \geqslant \frac{ln(0,003)}{-0,123} \iff t \geqslant 47,2 [/tex].

Donc, au bout de 47200 ans, l'organisme ne peut plus être daté au carbone 14.

Bonne journée !

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.