Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour je bloque sur cet exercice, si quelqu’un peut m’aider un petit peu... Merci d’avance

Bonjour Je Bloque Sur Cet Exercice Si Quelquun Peut Maider Un Petit Peu Merci Davance class=

Sagot :

Tenurf

Bjr,

1)

[tex]f(z) \in \mathbb{R} \\\\\iff f(z)=\overline{f(z)}\\\\\iff z(\overline{z}+1)=\overline{z}(z+1)\\\\\iff z=\overline{z}\\\\\iff z \in \mathbb{R}[/tex]

C'est l'axe des abscisses.

2)

Notons z=a+ib

[tex]f(z)=(a+ib)(a-ib+1)=(a+a^2+b^2)+bi[/tex]

f(z) imaginaire pur est équivalent à

[tex]a^2+b^2+a=0\\\\\iff (a+\dfrac{1}{2})^2-\dfrac1{4}+b^2=0 \\\\\iff (a+\dfrac{1}{2})^2+b^2=\dfrac1{2^2}[/tex]

C'est le cercle de centre (-1/2;0) et de rayon 1/2

3)

[tex]a^2+b^2+a=4\\\\\iff (a+\dfrac{1}{2})^2-\dfrac1{4}+b^2=4 \\\\\iff (a+\dfrac{1}{2})^2+b^2=\dfrac{17}{4}[/tex]

C'est le cercle de centre (-1/2;0) et de rayon [tex]\sqrt{17}[/tex]/2

4)

[tex]a^2+b^2+a=b\\\\\iff (a+\dfrac{1}{2})^2-\dfrac1{4}+(b-\dfrac{1}{2})^2-\dfrac1{4}=0 \\\\\iff (a+\dfrac{1}{2})^2+(b-\dfrac{1}{2})^2=\dfrac1{2}[/tex]

C'est le cercle de centre (-1/2;1/2) et de rayon 1/[tex]\sqrt{2}[/tex]

Merci

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.