Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour j'aimerais de l'aide sur un DM en mathématique la consigne est la suivante:
ABCD est un rectangle. AB=6 ; BC=10
BM=CN=DO=AP
On pose BM=x On note A(x) l'aire de MNOP.

1°) Quelles sont les valeurs possibles pour x ?

2°) Montrer que A(x) = 2x^-16x+60

3°) Déterminer les valeurs de x pour lesquelles l'aire A(x) est maximale ou minimale.
Quelles est la valeur de cette aire minimale ?
4°) Pour quelles valeurs de x l'aire de la partie non hachurée est-elle supérieure a 30?
Merci d'avance a ceux qui m'aiderons.


Sagot :

Réponse :

1) quelles sont les valeurs possibles pour x

             x ∈ [0 ; 10]

2) Montrer que A(x) = 2 x² - 16 x + 60

A(x) = 60 - [2 * (1/2(x*(6 - x) + 2*(1/2(x*(10 - x)]

       = 60 - (x(6 -x) + x(10 - x))

       = 60 - (6 x - x² + 10 x - x²)

       = 60 - (16 x - 2 x²)

       = 60 - 16 x + 2 x²

3) déterminer les valeurs de x pour lesquelles l'aire  A(x) est maximale ou minimale ?

 A(x) = 2 x² - 16 x + 60

        = 2(x² - 8 x + 30)

        = 2(x² - 8 x + 30 + 16 - 16)

        = 2(x² - 8 x + 16 + 14)

        = 2((x - 4)² + 14)

        = 2(x - 4)² + 28

   A(x) est minimale pour  x = 4

4) je ne peux répondre à cette question car je ne sais où se trouve la partie hachurée ( manque le dessin)      

Explications étape par étape

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.