Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Pouvez-vous m'aider à répondre à cette question? J'ai un examen demain
On nous demande de montrer que


Pouvezvous Maider À Répondre À Cette Question Jai Un Examen Demain On Nous Demande De Montrer Que class=

Sagot :

Réponse:

Bonjour je vais vous aider. La fonction E est la fonction partie entière.

Explications étape par étape:

E((n+1)/2)+E(-n/2)

=E((n/2)+1/2)+E(-n/2)

=E(n/2)+E(1/2)+E(-n/2)

=E(n/2)+E(-n/2) car E(1/2)=0

=E(n/2)-E(n/2) car E(-n/2)=-E(n/2)

=0 ---->CQFD

Bonsoir,

On veut prouver une propriété avec un [tex]\forall[/tex], donc on commence par en fixer un.

Soit [tex]n \in \mathbb{Z}[/tex].

On distingue deux cas, selon que n est pair ou impair :

- Si n est pair, alors [tex]\frac{n}{2}\in\mathbb{Z}[/tex] donc [tex]E(\frac{-n}{2})=\frac{-n}{2}[/tex].

De plus : [tex]E(\frac{n+1}{2})=\frac{n}{2}[/tex] puisque [tex]E(\frac{n+1}{2})[/tex] est le plus grand entier [tex]\le\frac{n+1}{2}[/tex].

Ainsi :

[tex]\boxed{E(\frac{n+1}{2})+E(\frac{-n}{2})=0}[/tex].

- Si n est impair : [tex]\frac{n+1}{2} \in \mathbb{Z}[/tex] donc [tex]E(\frac{n+1}{2} )=\frac{n+1}{2}[/tex] et, comme précédemment, [tex]E(\frac{-n}{2})=\frac{-n-1}{2}[/tex].

Attention, la partie entière d'un nombre réel x est toujours inférieure ou égale à ce nombre, donc, par exemple, E(-3/2)=-2 (et non -1). C'est pour ça que [tex]E(\frac{-n}{2})=\frac{-n-1}{2}[/tex] (et non [tex]\frac{-n+1}{2}[/tex]).

On obtient encore :

[tex]\boxed{E(\frac{n+1}{2})+E(\frac{-n}{2})=0}[/tex] ce qui est donc toujours vrai.

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.