Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

ABC et DEF sont deux triangles égaux avec A, B, C respectivement homologues à D, E, F. Met M' sont les milieux respectifs des côtés [BC] et [EF]. a. Démontrer que les triangles ABM et DEM sont égaux. b. En déduire que AM = DM.
Svp aidez moi à faire cet exercice ❤​

ABC Et DEF Sont Deux Triangles Égaux Avec A B C Respectivement Homologues À D E F Met M Sont Les Milieux Respectifs Des Côtés BC Et EF A Démontrer Que Les Trian class=

Sagot :

caylus

Réponse :

Bonjour,

Explications étape par étape

Les triangles ABC et DEF étant isométriques, il existe donc une isométrie que apllique le triangle ABC sur le triangle DEF.

Dans cette isométrie, l'image du milieu de [BC] =M  est le milieu de l'image de [BC], c'est à dire le milieu de [EF]=M' (car toute isométrie conserve les distances).

Par cette isométrie l'image de A est D,  l'image B est E,  l'image de M est M', l'image du triangle ABM est le triangle DEM' qui sont donc isométriques

l'image de [AM] est [DM'] . |AM|=|DM'|.

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.