Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour,
Avec les ...
[tex]\begin{aligned}(x-1)(x^{n-1}+x^{n-2}+\cdots +x^2+x+1) &= x^n + x^{n-1}+\cdots + x^2+x\\ &\ \ \ \ \ \ \ \; - x^{n-1}-\cdots - x^2-x-1\\&=x^n-1\end{aligned}[/tex]
ou de manière plus formelle
[tex]\displaystyle (x-1)\sum_{k=0}^{n-1} \ x^k =\sum_{k=0}^{n-1} \ x^{k+1}-\sum_{k=0}^{n-1} \ x^k\\\\=\sum_{k=1}^{n} \ x^k-\sum_{k=0}^{n-1} \ x^k\\\\=x^n+\sum_{k=1}^{n-1} \ x^k-\sum_{k=1}^{n-1} \ x^k-1\\\\=x^n-1[/tex]
Sinon pour x différent de 1 nous avons la somme des termes d'une suite géométrique
[tex]\displaystyle \sum_{k=0}^{n-1} \ x^k=\dfrac{x^n-1}{x-1}\\\\[/tex]
D'où la formule pour x différent de 1 et elle se vérifie pour x = 1 (car cela fait 0 = 0) aussi donc elle est vraie pour tout x
Merci
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.