Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour je suis en seconde et je n’arrive pas à faite cet exo, pouvez vous m’aider svp, merci d’avance :

a, b, c et d sont quatre nombres réels strictement positifs
tels que a < b et c < d.
1. Comparer ac et bc.
2. Comparer bc et bd.
3. Que peut-on en déduire ?
Énoncer la propriété démontrée.
4. Cette propriété est-elle vraie pour tous nombres réels
a, b, c et d?


Sagot :

Réponse:

1) ac < bc (multiplication par réel > 0)

2) bc< bd (multiplication par réel > 0)

3) Que ac < bd. on peut donc énoncer: Soit a,b,c,d 4 nombres réels strictement positif tels que a<b et c<d alors : ac<bd

4) non cette propriété n'est pas vraie pour tout nombre réel. on peut donner un contre exemple :

-1< 2 -2< -1

mais 2 n'est pas supérieur à -2

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.