Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour j'ai un petit devoir de math mais je ne comprends pas l'exercice. Si quelqu'un pouvait m'aider ou du moins m'éclaircir cela serait sympa.
Je vous met la photo de l'exercice
Merci d'avance et bonne journée​


Bonjour Jai Un Petit Devoir De Math Mais Je Ne Comprends Pas Lexercice Si Quelquun Pouvait Maider Ou Du Moins Méclaircir Cela Serait SympaJe Vous Met La Photo class=

Sagot :

Réponse :

Explications étape par étape

Bonjour, en premier lieu, tu peux utiliser les propriétés sur les puissances :

Soient a, b et c, trois réels quelconques, alors :

[tex]a^{b*c} = (a^{b})^{c}[/tex]

Ainsi : [tex]\sqrt{a^{2n}} = \sqrt{(a^{n})^{2}} = |a^{n}|[/tex] (toujours en valeur absolue !)

Ensuite on invoque la parité de n :

Si n est pair, alors il existe un entier k, tel que n = 2k.

Dans ce cas : [tex]|a^{n}| = |a^{2k}| = |(a^{k})^{2}|[/tex]

Un carré étant toujours positif, on peut s'affranchir de la valeur absolue. Si n est pair, on peut conclure que : [tex]|a^{n}| = a^{n}[/tex]

En revanche, si n est impair, n s'écrit sous la forme n = 2k+1. Ainsi :

[tex]|a^{n}| = |a^{2k+1}| = |a^{2k}*a| = |a^{2k}|*|a| = a^{2k}*|a|[/tex]

Ainsi, si n est impair, il suffit de prendre le terme n-1 qui sera pair (dont on s'affranchira de la valeur absolue), qu'on multiplie par la valeur absolue de a.

Conclusion :

n pair <==> [tex]\sqrt{a^{2n}} = a^{n}[/tex]

n impair <==> [tex]\sqrt{a^{2n}} = a^{n-1}*|a|[/tex]

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.