Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

J’ai besoin de votre aide svp !!

Jai Besoin De Votre Aide Svp class=

Sagot :

☘️ Salut ☺️

[tex]\rule{6cm}{1mm}[/tex]

Posons [tex]C = x[/tex].

Si on augmente la longueur du côté de [tex]2\:m[/tex], alors [tex]C = x + 2[/tex], avec l'aire qui augmente de [tex]20\:{m}^{2}[/tex], On a [tex]A + 20 = {(x + 2)}^{2}[/tex].

On a :

[tex]C = x[/tex]

[tex]A = {x}^{2}[/tex]

[tex]A + 20 = {(x + 2)}^{2}[/tex]

Trouvons [tex]x[/tex] :

[tex]A + 20 = {(x + 2)}^{2}[/tex]

[tex]{x}^{2} + 20 = {(x + 2)}^{2}[/tex]

[tex]{x}^{2} = {x}^{2} + 4x + 4 - 20[/tex]

[tex]{x}^{2} - {x}^{2} - 4x = - 16[/tex]

[tex] - 4x = - 16[/tex]

[tex] 4x = 16[/tex]

[tex] x = \dfrac{16}{4}[/tex]

[tex] \green{x = 4}[/tex]

Calculons l'aire [tex](A + 20)[/tex] de ce carré :

On a :

[tex]x = 4[/tex]

Alors :

[tex]A = {(4 + 2)}^{2} \: {m}^{2}[/tex]

[tex]A = {(6)}^{2} \: {m}^{2}[/tex]

[tex]\boxed{\boxed{\blue{A = 36 \: {m}^{2}}}}[/tex]

[tex]\rule{6cm}{1mm}[/tex]