Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Bonjour,

j'espère que vous allez tous très bien et que vous passez une bonne journée.

Je suis en seconde et je suis totalement bloquée sur mon dm de maths qui est pour la fin de la semaine, s'il vous plaît aidez moi...


Sujet:


ABC est un triangle.

I est le milieu de [AC], J est celui de [BI] et K est le point défini par

BK*= 1/3 BC*


1) Construire une figure.

2) Démontrer que AJ*=1/2 AB*+1/4AC*

3) Démontrer que AK*=2/3 AB*+1/3AC*

4) Démontrer que A, J et K sont alignés.


*=la flèche pour dire que c'est un vecteur


Merci d'avance, bonne journée.

Sagot :

Réponse :

        A

                                   / \  

                                 /  J   \I

                           B /...K........\C

2) démontrer que vec(AJ) = 1/2)vec(AB) + 1/4)vec(AC)

d'après la relation de Chasles on a; vec(AJ) = vec(AB) + vec(BJ)

or  vec(BJ) = 1/2)vec(BI)

et  vec(BI) = vec(BA) + vec(AI)   relation de Chasles

on a; vec(AI) = 1/2)vec(AC)

donc vec(AJ) = vec(AB) + 1/2)(vec(BA) + 1/2)vec(AC))

                    = vec(AB) + 1/2)(- vec(AB) + 1/2)vec(AC))

                    = vec(AB) - 1/2)vec(AB) + 1/4)vec(AC)

                    = 1/2)vec(AB) + 1/4)vec(AC)

3) démontrer que vec(AK) = 2/3)vec(AB) + 1/3)vec(AC)

d'après la relation de Chasles on a; vec(AK) = vec(AB) + vec(BK)

or vec(BK) = 1/3)vec(BC)  et  vec(BC) = vec(BA) + vec(AC) relation de Chasles

donc  vec(AK) = vec(AB) + 1/3)vec(BC)

                     = vec(AB) + 1/3)(vec(BA) + vec(AC))

                     = vec(AB) + 1/3)(- vec(AB) + vec(AC))

                     = vec(AB) - 1/3)vec(AB) + 1/3)vec(AC)

                     = 2/3)vec(AB) + 1/3)vec(AC)

4) démontrer que A; J et K sont alignés

il suffit de montrer que les vecteurs AK et AJ sont colinéaires

vec(AK) = 2/3)vec(AB) + 1/3)vec(AC)

vec(AJ) = 1/2)vec(AB) + 1/4)vec(AC)

or vec(AK) = 4/6)vec(AB) + 4/12)vec(AC)

                = 4/3)(1/2vec(AB) + 1/4)vec(AC))

donc vec(AK) = 4/3)vec(AJ) ; donc   les vecteurs AK et AJ sont colinéaires

on en déduit que les points A, J et K sont alignés      

Explications étape par étape

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.