Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour,

j'espère que vous allez tous très bien et que vous passez une bonne journée.

Je suis en seconde et je suis totalement bloquée sur mon dm de maths qui est pour la fin de la semaine, s'il vous plaît aidez moi...


Sujet:


ABC est un triangle.

I est le milieu de [AC], J est celui de [BI] et K est le point défini par

BK*= 1/3 BC*


1) Construire une figure.

2) Démontrer que AJ*=1/2 AB*+1/4AC*

3) Démontrer que AK*=2/3 AB*+1/3AC*

4) Démontrer que A, J et K sont alignés.


*=la flèche pour dire que c'est un vecteur


Merci d'avance, bonne journée.


Sagot :

Réponse :

        A

                                   / \  

                                 /  J   \I

                           B /...K........\C

2) démontrer que vec(AJ) = 1/2)vec(AB) + 1/4)vec(AC)

d'après la relation de Chasles on a; vec(AJ) = vec(AB) + vec(BJ)

or  vec(BJ) = 1/2)vec(BI)

et  vec(BI) = vec(BA) + vec(AI)   relation de Chasles

on a; vec(AI) = 1/2)vec(AC)

donc vec(AJ) = vec(AB) + 1/2)(vec(BA) + 1/2)vec(AC))

                    = vec(AB) + 1/2)(- vec(AB) + 1/2)vec(AC))

                    = vec(AB) - 1/2)vec(AB) + 1/4)vec(AC)

                    = 1/2)vec(AB) + 1/4)vec(AC)

3) démontrer que vec(AK) = 2/3)vec(AB) + 1/3)vec(AC)

d'après la relation de Chasles on a; vec(AK) = vec(AB) + vec(BK)

or vec(BK) = 1/3)vec(BC)  et  vec(BC) = vec(BA) + vec(AC) relation de Chasles

donc  vec(AK) = vec(AB) + 1/3)vec(BC)

                     = vec(AB) + 1/3)(vec(BA) + vec(AC))

                     = vec(AB) + 1/3)(- vec(AB) + vec(AC))

                     = vec(AB) - 1/3)vec(AB) + 1/3)vec(AC)

                     = 2/3)vec(AB) + 1/3)vec(AC)

4) démontrer que A; J et K sont alignés

il suffit de montrer que les vecteurs AK et AJ sont colinéaires

vec(AK) = 2/3)vec(AB) + 1/3)vec(AC)

vec(AJ) = 1/2)vec(AB) + 1/4)vec(AC)

or vec(AK) = 4/6)vec(AB) + 4/12)vec(AC)

                = 4/3)(1/2vec(AB) + 1/4)vec(AC))

donc vec(AK) = 4/3)vec(AJ) ; donc   les vecteurs AK et AJ sont colinéaires

on en déduit que les points A, J et K sont alignés      

Explications étape par étape

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.