Sagot :
On peut écrire f comme une composition de fonctions: f(x) = g o h (x), avec g: x-> x - 1/x et h: x-> ln x
h est croissante sur ]1;+∞[, et l'inmage de cet intervalle est lR+ g est croissante sur lR+, car c'est la somme de deux fonction croissantes sur cet intervalle (x et -1/x) Donc f est croissante.
On peut aussi passer par les dérivées: g'(x) = 1 + 1/x² h'(x) = 1/x
Donc f'(x) = h'(x) . g' o h(x) = 1/x . (1 + 1/(ln x)²)
On a: (1/ ln x)² > 0 sur ]1;+∞[ car c'est un carré; donc (1 + 1/(ln x)²) > 0 sur cet intervalle 1/x > 0 sur ]0, +∞[
Donc f'(x) >0 sur ]1;+∞[
h est croissante sur ]1;+∞[, et l'inmage de cet intervalle est lR+ g est croissante sur lR+, car c'est la somme de deux fonction croissantes sur cet intervalle (x et -1/x) Donc f est croissante.
On peut aussi passer par les dérivées: g'(x) = 1 + 1/x² h'(x) = 1/x
Donc f'(x) = h'(x) . g' o h(x) = 1/x . (1 + 1/(ln x)²)
On a: (1/ ln x)² > 0 sur ]1;+∞[ car c'est un carré; donc (1 + 1/(ln x)²) > 0 sur cet intervalle 1/x > 0 sur ]0, +∞[
Donc f'(x) >0 sur ]1;+∞[
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.