Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonsoir, j'ai besoin d'aide pour cet exercice svp.
Niveau 1ère Spé maths, merci d'avance.

Bonsoir Jai Besoin Daide Pour Cet Exercice Svp Niveau 1ère Spé Maths Merci Davance class=

Sagot :

Réponse :

g (x) = √x/(x+1)   g est définie sur ]0 ; + ∞[

démontrer que pour tout nombre réel x > 0

            g '(x) = (1 - x)√x/2 x(x + 1)²

g (x) = √x/(x+1)  

  g '(x) = (u/v)' = (u'v - v'u)/v²

u = √x  ⇒ u' = 1/2√x

v = x + 1 ⇒ v' = 1

g '(x) = [1/2√x)(x + 1) - √x]/(x + 1)²

        = [√x/2 x)(x + 1) - √x]/(x + 1)²

        = ((x√x)/2 x) + (√x/2 x) - √x)/(x + 1)²

        = ((x√x)/2 x) + (√x/2 x) - 2 x√x/2 x)/(x + 1)²

        = (√x/2 x) - x√x/2 x)/(x + 1)²

        = (√x - x√x)/2 x(x + 1)²

        = (1 - x)√x/2 x(x + 1)²    

Explications étape par étape

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.