Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonsoir, j'ai besoin d'aide pour cet exercice svp.
Niveau 1ère Spé maths, merci d'avance.


Bonsoir Jai Besoin Daide Pour Cet Exercice Svp Niveau 1ère Spé Maths Merci Davance class=

Sagot :

Réponse :

g (x) = √x/(x+1)   g est définie sur ]0 ; + ∞[

démontrer que pour tout nombre réel x > 0

            g '(x) = (1 - x)√x/2 x(x + 1)²

g (x) = √x/(x+1)  

  g '(x) = (u/v)' = (u'v - v'u)/v²

u = √x  ⇒ u' = 1/2√x

v = x + 1 ⇒ v' = 1

g '(x) = [1/2√x)(x + 1) - √x]/(x + 1)²

        = [√x/2 x)(x + 1) - √x]/(x + 1)²

        = ((x√x)/2 x) + (√x/2 x) - √x)/(x + 1)²

        = ((x√x)/2 x) + (√x/2 x) - 2 x√x/2 x)/(x + 1)²

        = (√x/2 x) - x√x/2 x)/(x + 1)²

        = (√x - x√x)/2 x(x + 1)²

        = (1 - x)√x/2 x(x + 1)²    

Explications étape par étape

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.