Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour pouvez vous m'aider SVP
x y et z sont des nombres réel on pose:
A=x²-yz B=y²-zx C=z²-xy
montrer que xA+yB+zC=(x+y+z)(A+B+C)
Merci d'avance


Sagot :

Bonjour,

On a :

[tex] xA+yB+zC=x^{3}-xyz+y^{3}-xyz+z^{3}-xyz [/tex]. Donc :

[tex] xA+yB+zC=x^{3}+y^{3}+z^{3}-3xyz [/tex].

On utilise l'identité de Gauss, il vient que :

[tex] xA+yB+zC=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz) [/tex]

Donc [tex] xA+yB+zC=(x+y+z)(A+B+C) [/tex]

Bonne journée.

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.