Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, quelqu’un pourrait il m’aider svp, je dois le rendre dans 2heures
merci


Bonjour Quelquun Pourrait Il Maider Svp Je Dois Le Rendre Dans 2heures Merci class=

Sagot :

Svant

Réponse:

soit P(n) : n(2n+1)(7n+1) = 6k

initialisation

n= 0

0(2×0+1)(7×0+1)=0

0 est multiple de 6

P(0) est vraie.

heredité

Supposons la propriété vraie pour un entier naturel n. Montrons que (n+1)(2n+3)(7n+8) est multiple de 6

develeppons :

n(14n²+9n+1) = 6k

14n³ + 9n² + n = 6k

au rang n+1 on a :

(n+1)(2(n+1)+1)(7(n+1)+1) =

(n+1)(2n+3)(7n+8) =

(n+1)(14n² + 37n + 24) =

14n³+ 37n² + 24n + 14n² + 37n + 24 =

14n³ + 51n² + 61n + 24 =

14n³ + 9n² + n + (42n²+60n+24) =

6k + 6(7n²+10n+4) =

6( k + 7n² + 10n + 4) =

6k' avec k' entier naturel.

P(n+1) est vraie

Conclusion :

la propriété est vraie au rang 0 et est hereditaire donc elle est vraie pour tout entier naturel n.

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.