Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour,
On dit qu'une fonction [tex] f [/tex] est paire sur [tex] \mathbb{R} [/tex] si et seulement si :
[tex] \forall x \in \mathbb{R}, f(-x)=f(x) [/tex].
De même, f est impaire sur [tex] \mathbb{R} [/tex] si et seulement si :
[tex] \forall x \in \mathbb{R}, f(-x)=-f(x) [/tex]
Appliquons cela aux trois fonctions :
1) Soit [tex] x \in \mathbb{R} [/tex]. On a :
[tex] f(-x)=(-x)^{2}+1=x^{2}+1=f(x) [/tex]
Donc f est paire.
2) Soit [tex] x \in \mathbb{R} [/tex]. On a :
[tex] f(-x)=2*(-x)-4*(-x)^{3}=-2x+4x^{3}=-f(x) [/tex]
Donc f est impaire.
3) Soit [tex] x \in \mathbb{R} [/tex]
[tex] f(-x)=(-x)^{5}-1=-x^{5}-1 [/tex]. Donc f n'a pas de parité.
Voilà, bonne journée.
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.