Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

J’aurais besoin d’aide svp
Merci


Jaurais Besoin Daide Svp Merci class=

Sagot :

caylus

Réponse :

Bonsoir,

Explications étape par étape

1)

Il semble que la suite soit décroissante et qu'elle converge vers 1.

2)

[tex]u_0=5\\u_{n+1}=\dfrac{4u_n-1}{u_n+2} \\\\Initialisation:\ u_0 > 1\\\\H\' er\' edit\' e:\\\\u_{n+1}=\dfrac{4u_n-1}{u_n+2} =\dfrac{4u_n+8-9}{u_n+2} =4-\dfrac{9}{u_n+2} \\u_n >1\\\\u_n+2 > 3\\\\\dfrac{1}{u_n+2} < \dfrac{1}{3} \\\\\dfrac{-9}{u_n+2} > \dfrac{-9}{3} \\\\4-\dfrac{-9}{u_n+2} > 4-3 \\\\u_{n+1} > 1\\[/tex]

3)

[tex]u_{n+1}-u_n=\dfrac{4u_n-1}{u_n+2} -u_n=\dfrac{-u_n^2+2u_n-1}{u_n+2} \\\\u_{n+1}-u_n=-\dfrac{(u_n-1)^2}{u_n+2}\\\\(u_n-1)^2 > 0\\u_n+2 > 0\\\\u_{n+1}-u_n=-\dfrac{(u_n-1)^2}{u_n+2} < 0\\[/tex]

La suite est donc décroissante

4)

a)

[tex]v_n=\dfrac{1}{u_n-1} \\\\v_0=\dfrac{1}{u_0-1}=\dfrac{1}{5-1}=\dfrac{1}{4}\\[/tex]

[tex]v_{n+1}=\dfrac{1}{u_{n+1}-1}=\dfrac{u_n+2}{3u_n-3} \\\\=\dfrac{1}{3} (\dfrac{u_n-1}{u_n-1} +\dfrac{3}{u_n-1} )\\\\=\dfrac{1}{3} +v_n\\[/tex]

La suite v(n) est donc arithmétique de premier terme 1/4 et de raison 1/3

b)

[tex]v_n=\dfrac{1}{4} +\dfrac{n}{3} \\\\u_n=1+\dfrac{1}{\dfrac{1}{4}+\dfrac{n}{3} } \\\\\\\displaystyle \lim_{n \to \infty} u_n =\lim_{n \to \infty} (1+\dfrac{12}{3-4n})=1[/tex]

View image caylus
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.