Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

On souhaite démontrer la propriété suivante, notée P:
"In(2)/ln(3) est irrationnel. "
On raisonne par l'absurde.
1) Traduire la propriété contraire de P.
2) Utiliser les propriétés algébriques de la fonction logarithme népé-
rien pour aboutir à une contradiction.

Bonjour, voici mon problème, est-il possible de m’aider ?


Sagot :

Tenurf

Bonjour,

Supposons que ce soit rationnel, il existe p et q premier entre eux tels que

[tex]\dfrac{ln(2)}{ln(3)}=\dfrac{p}{q} \iff qln(2)=3ln(p) \iff ln(2^q)=ln(3^p) \iff 2^q=3^p \\\\\iff p = q\\[/tex]

Du coup, ca donne ln(2)=ln(3) et c'est pas possible comme la fonction ln est une bijection sur son domaine de définition

Donc ln(2)/ln(3) est irrationnel.

Merci

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.