Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

On souhaite démontrer la propriété suivante, notée P:
"In(2)/ln(3) est irrationnel. "
On raisonne par l'absurde.
1) Traduire la propriété contraire de P.
2) Utiliser les propriétés algébriques de la fonction logarithme népé-
rien pour aboutir à une contradiction.

Bonjour, voici mon problème, est-il possible de m’aider ?


Sagot :

Tenurf

Bonjour,

Supposons que ce soit rationnel, il existe p et q premier entre eux tels que

[tex]\dfrac{ln(2)}{ln(3)}=\dfrac{p}{q} \iff qln(2)=3ln(p) \iff ln(2^q)=ln(3^p) \iff 2^q=3^p \\\\\iff p = q\\[/tex]

Du coup, ca donne ln(2)=ln(3) et c'est pas possible comme la fonction ln est une bijection sur son domaine de définition

Donc ln(2)/ln(3) est irrationnel.

Merci

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.