Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour j'ai besoin d'aide pour deux exercices de maths sur les fonction qui convergent... je vous remercie d'avance pour votre aide.
je vous joins l'exo en pdf ci-dessous :


Sagot :

Tenurf

Bonjour,

1) a)

[tex]f_n(0)=0 \rightarrow 0\\\\\forall x \in ]0;1[\ f_n(x)=nx^nln(x) \rightarrow 0\\\\f_n(1)=0 \rightarrow 0[/tex]

Donc (fn) converge simplement vers la fonction nulle sur [0;1]

b)

[tex]\forall x \in ]0;1[ \ g_n'(x)=-nx^{n-1}(1+nln(x))[/tex]

[tex]1+nln(x)=0 \iff nln(x)=-1 \iff x=e^{-1/n}[/tex]

[tex]g_n[/tex] est 0 en 0, croissante jusqu'en [tex]x=e^{-1/n}[/tex] puis décroissante et égale a 0 en x=1

le max de [tex]g_n[/tex] sur [0;1] est atteint en [tex]x=e^{-1/n}[/tex] et vaut

[tex]g_n(e^{-1/n})=-f_n(e^{-1/n})=-ne^{-1} \times (-\dfrac1{n})=e^{-1}[/tex]

c)

Donc

[tex]||g_n||_{\infty} = e^{-1}[/tex]

d) Elle ne converge pas uniformément car [tex]||g_n||_{\infty}[/tex] ne tend pas vers 0.

Exo 2

1)a)

[tex]|f_n(x)|\leq \dfrac1{n}\rightarrow 0[/tex]

il y a convergence simple vers la fonction nulle.

b) Comme nous avons l'inégalité précédente pour tout x réel,

[tex]||f_n||_{\infty} =\dfrac1{n} \rightarrow 0[/tex]

Donc nous avons convergence uniforme

c)

[tex]f_n'(x)=-\dfrac{n^2sin(n^2x)}{n}=-nsin(n^2x)[/tex]

pour x=0 cela vaut 0 et donc tend vers 0

pour

[tex]x=\dfrac{\pi}{2n^2}[/tex]

cela vaut -n et tend vers moins l infini

donc la suite des dérivées de converge pas.

Merci

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.