Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Salut ! Je dois faire un exo de maths mais je suis vraiment nulle en Maths et j'ai contrôle mardi donc j'aimerais bien comprendre la factorisation ... En gros j'ai compris le principe mais là j'arrive pas à l'appliquer. Exemple de mon exo : A = (3x-1)²-81



Sagot :

1 Développement et Factorisation.

1.1 Egalité k(a +b ) = ka + kb

Propriété : quels que soient les relatifs a, b et k on a : k(a + b) = ka + kb
De gauche à droite on développe, de droite à gauche on factorise.
Exemples : -3(

x+2) = -3 ´ x + (-3) ´ 2 = -3x - 6 développementx – 15 = 5 ´ x – 5 ´ 3 = 5(x - 3) factorisation´ (-9) = 2y – 18 développementx + 5x = (3 + 5)x = 8x factorisationx=5, -3(x+2) = -3(5+2) = -3 ´ 7 = -21 et -3x - 6 = -3 ´ 5 - 6 = -15 - 6 = -21´1= 2 et 2y – 18 = 2´10 – 18 = 20 – 18 = 2
1.2 (a +b )(c + d)

Propriété : quels que soient les relatifs a, b, c et d on a (a + b)(c + d) = ac + ad + bc + bd
De gauche à droite on développe.
Exemples : A = (3 +
x)(x + 7) = 3x + 3 ´ 7 + x ´ x + x ´ 7 = 3x + 21 + x2 + 7x
B = (
B = 2
C = (y – 7)(-5 – y) = [y + (-7)][-5 + (-y)]
C = y
C = -5y – y
Après avoir développer il est souvent demandé de réduire.
Vérification : il est conseillé de vérifier ses développements en choisissant un nombre qui
remplacera l’inconnue dans les premières et dernières expressions.
Exemple : Si
x – 3)(2x + 5) = [x + (-3)] (2x + 5) = x ´ 2x + x ´ 5 + (-3) ´ 2x + (-3) ´ 5x2 + 5x – 6x –15´ (-5) + y ´ (-y) + (-7) ´ (-5) + (-7) ´ (-y)2 + 35 + 7yx = 2 on a (3 + x)( x+ 7) = (3 + 2)(2 + 7) = 5 ´ 9 = 45
et 3
x + 21 + x2 + 7x = 3 ´ 2 + 21 + 22 + 7 ´ 2 = 6 + 21 + 4 +14 = 45
5
2(y - 9) = 2[y + (-9)] = 2y + (-2)
3
Vérification : pour vérifier que l’on n’a pas fait d’erreur on peut choisir un nombre qui
remplacera l’inconnue dans les premières et dernières expressions. On doit alors trouver le
même résultat.
Exemples : si
si y=10, 2(y-9) = 2(10-9) = 2

A= 9x²+6x+1-81

     9x²+6x-80

 

il faut que tu utilise les identités remarquable

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.