Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Rebonjour,

pouvez-vous m'expliquer comment répondre à ces 2 questions s'il-vous-plaît ? (Dérivation) :

- Déterminer la dérivée des fonctions définies par (j'ai fais le reste mais celui-ci me pose problème à cause de la puissance de 1/x):

h (x) = 2e^(1/x)


- Soit la fonction définie sur ℝ par = xe^(-x/2)

a) Calculer la dérivée de la fonction .

b) En déduire les variations de la fonction .

Merci d'avance.


Sagot :

Réponse :

Explications étape par étape :

■ Domaine de définition de h = IR - { 0 }

   h(x) = 2 exp(1/x) donne

  dérivée h ' (x) = (-2/x²) exp(1/x)

  toujours négative donc

  h est toujours décroissante !

  pour x tendant vers zéro négatif :

   Lim h(x) = 0

■ f(x) = x exp(-0,5x)

   dérivée f ' (x) = (1 - 0,5x) exp(-0,5x)

   cette dérivée est positive pour 0,5x < 1

                                                             x < 2

   tableau de variation :

    x --> -∞          0      1           2          3            +∞

varia ->        croissante          |     décroissante

 f(x) --> -∞          0   0,61*   0,736*   0,67*        0+

* : valeurs arrondies !

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.