Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Réponse :
Bonjour
Questions preliminaires :
1. Le nombre de bacteries augmente rapidement puis se stabilise au bout de 2h.
2. T passe par K et J, f'(1,5) est la pente de la tangente T :
[tex]f'(1,5) =\frac{y_K-y_J}{x_K-x_J} = =\frac{34,75-1}{3-0} = 11,25[/tex]
f'(2) est la pente de la tangente à Cf au point B. Or T' est parallèle à l'axe des abscisses donc :
f'(2) = 0
Partie 1
1. f est une fonction polynôme. Les fonctions polynômes sont définies et dérivables sur [tex]\mathbb{R}[/tex] donc f est définie et dérivable sur [tex]\mathbb{R}[/tex]
f'(t) = -5×3t²+15×2t + 0
f'(t) = -15t²+30t
2.
f'(1,5 ) = -15×1,5² + 30×1,5 = -33,75 + 45 = 11,25
f'(2) = -15×2² + 30×2 = -60 + 60 = 0
3.
La vitesse d'accroissement du nombre de bactérie est donnée par f'(t). Or, f'(t) et une fonction polynôme du second degré donc f'(t) n'est pas constante.
Explications étape par étape
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.