Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Réponse :
Bonjour
Explications étape par étape
1)
Une valeur qui augmente de 5% est multipliée par (1+5/100) soit 1.05.
Donc d'une année sur l'autre le nb de calculatrices vendues est miltiplié par 1.05 , nb auquel il faut enlever 10 milliers de calculatrices vendues par la concurrence.
Donc :
U(n+1)=U(n)*1.05-10 ou :
U(n+1)=1.05U(n)-10
2)
Soit la suite (W(n)) qui est constante avec la même relation de récurrence . Donc :
W(n+1)=W(n)=a
Mais W(n+1)=1.05W(n)-10
donc :
a=1.05a-10
10=1.05a-a
10=0.05a
a=10/0.05=200
Donc on pose :
V(n)=U(n)-200 qui donne :
V(n+1)=U(n+1)-200 mais : U(n+1)=1.05U(n)-10
Donc :
V(n+1)=1.05Un-10-200
V(n+1)=1.05Un-210 ==>On met 1.05 en facteur :
V(n+1)=1.05[U(n)-200] ==>mais U(n)-200=V(n) donc :
V(n+1)=1.05V(n)
qui prouve que :
La suite (V(n)) est une suite géométrique de raison q=1.05 et de 1er terme V(0)=U(0)-200=600-200=400.
On peut continuer :
On sait alors que :
V(n)=V(0)*q^n soit :
V(n)=400*1.05^n
qui donne :
U(n)=400*1.05^n+200
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.