Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
Bonjour,
Explications étape par étape
Méthode de Gauss:
[tex]1+3+5+7+...+2n-3+2n-1=S\\2n-1+2n-3+...+3+1=S\\2n+2n+2n+..+2n+2n=2S\\\Longrightarrow\ S=\dfrac{n*2n}{2} =n^2\\[/tex]
a)
[tex]\displaystyle \sum_{i=1}^n\ (2i-1)=\dfrac{(2n-1)+1}{2} *n=n^2\\[/tex]
b)
[tex]initialisation:\\1=(2*1-1)^2\\h\'er\'edit\'e:\\\\\displaystyle \sum_{i=1}^n\ (2i-1)=n^2\ est\ vrai\\\\\displaystyle \sum_{i=1}^{n+1}\ (2i-1)=\displaystyle \sum_{i=1}^n\ (2i-1)\ +\ 2(n+1)-1\\\\=n^2+2n+2-1\\\\=(n+1)^2\\[/tex]
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.