Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour aidez moi svp, merci d'avance
On donne la formule :
1+3+5+....+(2n-1)=n^2 pour tout entier n>=1
Illustration :
Démontrer la formule donnée ci dessus de deux manières :
1) en considérant la suite arithmétique des entiers impairs
2)par un raisonnement par récurrence


Bonjour Aidez Moi Svp Merci Davance On Donne La Formule 1352n1n2 Pour Tout Entier Ngt1 Illustration Démontrer La Formule Donnée Ci Dessus De Deux Manières 1 En class=

Sagot :

caylus

Réponse :

Bonjour,

Explications étape par étape

Méthode de Gauss:

[tex]1+3+5+7+...+2n-3+2n-1=S\\2n-1+2n-3+...+3+1=S\\2n+2n+2n+..+2n+2n=2S\\\Longrightarrow\ S=\dfrac{n*2n}{2} =n^2\\[/tex]

a)

[tex]\displaystyle \sum_{i=1}^n\ (2i-1)=\dfrac{(2n-1)+1}{2} *n=n^2\\[/tex]

b)

[tex]initialisation:\\1=(2*1-1)^2\\h\'er\'edit\'e:\\\\\displaystyle \sum_{i=1}^n\ (2i-1)=n^2\ est\ vrai\\\\\displaystyle \sum_{i=1}^{n+1}\ (2i-1)=\displaystyle \sum_{i=1}^n\ (2i-1)\ +\ 2(n+1)-1\\\\=n^2+2n+2-1\\\\=(n+1)^2\\[/tex]

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.