Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour tout le monde
Pourriez vous m'aider pour cet exercice en maths c'est pour demain

Merci d'avance


Bonjour Tout Le Monde Pourriez Vous Maider Pour Cet Exercice En Maths Cest Pour Demain Merci Davance class=

Sagot :

Réponse : Bonsoir,

a²-b² est premier, il a donc seulement deux diviseurs: 1, a²-b².

Il se décompose de deux façons:

i) [tex]a^{2}-b^{2}=1 \times (a^{2}-b^{2})[/tex]

Donc:

[tex]a^{2}-b^{2}=(a-b)(a+b)=1 \times (a^{2}-b^{2})\\a-b=1 \quad ou \quad a+b=a^{2}-b^{2}\\a=b+1 \quad ou \quad a^{2}-b^{2}-a-b=0\\a=b+1 \quad ou \quad (a-b)(a+b)-(a+b)=0\\a=b+1 \quad ou \quad (a+b)[a-b-1]=0\\a=b+1 \quad ou \quad [a=-b \quad ou \quad a=b+1][/tex]

a=-b n'est pas possible car a et b sont des entiers naturels, donc a=b+1.

a et b sont donc consécutifs.

ii) [tex]a^{2}-b^{2}=(a^{2}-b^{2}) \times 1[/tex]

Donc:

[tex]a^{2}-b^{2}=(a-b)(a+b)=(a^{2}-b^{2}) \times 1\\a-b=a^{2}-b^{2} \quad ou \quad a+b=1\\a^{2}-b^{2}-a+b=0 \quad ou \quad a+b=1[/tex]

Comme a et b sont des entiers naturels, alors seuls a=0, et b=1 ou a=1, et b=0, vérifient a+b=1, a et b sont donc consécutifs.

Puis:

[tex]a^{2}-b^{2}-a+b=0\\(a-b)(a+b)-(a-b)=0\\(a-b)(a+b-1)=0\\a-b=0 \quad ou \quad a+b-1=0\\a=-b \quad ou \quad a+b=1[/tex]

a=-b n'est pas possible, car a et b sont des entiers naturels, et on a vu que a+b=1, impliquait a=0, b=1, ou a=1, b=0.

a et b sont donc consécutifs.

Conclusion: a²-b² premier implique que a et b sont consécutifs.