Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
Justifier de même que le produit de 2 nombres impairs est impair
soit m = 2 p + 1 et m' = 2 p' + 1
compléter :
mm' = (2 p + 1)(2 p' + 1) = 4 pp' + 2 p + 2 p' + 1
= 2(2 pp' + p + p') + 1
conclure : donc mm' est un nombre impair
en déduire en utilisant les 2 propriétés ci-dessous
le carré d'un nombre pair est un nombre pair et inversement
le carré d'un nombre impair est un nombre impair et inversement
justifier que √2 n'est pas rationnel
on suppose que √2 est rationnel; alors il existe 2 entiers a et b premiers entre eux tel que √2 = a/b (a/b est une fraction irréductible)
√2 = a/b alors (√2)² = a²/b²
donc a² = 2 b²
on en déduit que a est pair
comme a est pair, il existe a' tel que a = 2 a'
donc a² = (2 a')² = 4 a'²
donc 4 a'² = 2 b² donc b² = 2 a'²
donc b est pair
Quelle contradiction a-t-on obtenu ? il est possible de simplifier a/b par 2 ce qui contredit l'hypothèse que a et b sont premiers entre eux c'est à dire que la fraction a/b est irréductible
conclure : puisque l'hypothèse √2 est rationnel conduit à une contradiction donc √2 est irrationnel
Explications étape par étape
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.
Comment on différencie le zinc, le cuivre, l'argent et le fer entre eux ? Merci beaucoup d'avance :d