Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour est ce que vous pouvez m’aider svp mrc en avance

Bonjour Est Ce Que Vous Pouvez Maider Svp Mrc En Avance class=

Sagot :

Réponse :

Justifier de même que le produit de 2 nombres impairs est impair

soit m = 2 p + 1  et  m' = 2 p' + 1

compléter :

                    mm' = (2 p + 1)(2 p' + 1) = 4 pp' + 2 p + 2 p' + 1

                             = 2(2 pp' + p + p') + 1  

           conclure :  donc mm' est un nombre impair  

en déduire en utilisant les 2 propriétés ci-dessous

le carré d'un nombre pair est un nombre pair  et inversement

le carré d'un nombre impair est un nombre impair et inversement

justifier que √2 n'est pas rationnel

on suppose que √2 est rationnel; alors il existe 2 entiers a et b premiers entre eux  tel que  √2 = a/b (a/b est une fraction irréductible)

√2 = a/b  alors  (√2)² = a²/b²

donc  a² = 2 b²

on en déduit que a est pair

comme a est pair, il existe a' tel que  a = 2 a'

donc  a² = (2 a')² = 4 a'²

donc 4 a'² = 2 b²   donc  b² = 2 a'²

donc b est pair

  Quelle contradiction a-t-on obtenu ? il est possible de simplifier a/b par 2  ce qui contredit l'hypothèse que a et b sont premiers entre eux c'est à dire que la fraction a/b est irréductible

conclure : puisque l'hypothèse √2 est rationnel conduit à une contradiction donc √2 est irrationnel  

Explications étape par étape

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.