Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour j’ai besoin d’aide pour ces exercices (développer avec ou sans IR) merci de votre aide !<3

Bonjour Jai Besoin Daide Pour Ces Exercices Développer Avec Ou Sans IR Merci De Votre Aide Lt3 class=

Sagot :

Réponse :

126 :

1.

f(t) = [tex](3t+2)^{2} -9\\[/tex]

f(t) = [tex]9t^{2} +12t+4-9[/tex]

f(t) = [tex]9t^{2} +12t-5[/tex]

2.

f(t) =[tex](3t-1)(3t+5)[/tex]

f(t) = [tex]9t^{2}+15t-3t-5[/tex]

f(t) = [tex]9t^{2} +12t-5[/tex]

127 :

[tex]= (2*(x-7)^{2}-3) \\= (2*(x-7)(x-7)-3)\\= (2x-14)(x-7)-3\\= 2x^{2}-14x-14x+98-3\\= 2x^{2}-28x+95[/tex]

Explications étape par étape

dans le 126 :

1. d'abord on développe en utilisant l'identité remarquable : [tex](a+b)^{2} = a^{2} +2ab+b^{2}\\[/tex]

puis on réduit en faisant 4-9 = -5

2. on va développer l'expression en faisant de la double distributivité :

- d'abord on fait 3t*3t

- ensuite on fait 3t*5

- puis on fait -1*3t

- enfin on fait -1*5

et on réduit en faisant 15t-3t = 12t

on se rend alors compte que les deux expression développées et réduites sont les mêmes

127 :

en premier lieu on développe le [tex](x-7)^{2}[/tex]

puis on fait de la simple distributivité avec [tex]2(x-7) = (2x-14)[/tex]

on peut ensuite faire de la double distributivité avec [tex](2x-14)(x-7) = 2x^{2}-14x-14x+98[/tex]

et on finit par tout réduire :

[tex]2x^{2}-14x-14x+98-3 = 2x^{2}-28x+95[/tex]

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.