Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
a) Xi= [tex]\frac{Xm+Xp}{2}[/tex] Yi=[tex]\frac{Ym+Yp}{2}[/tex]
=[tex]\frac{ -6+4}{2}[/tex] = [tex]\frac{-1+(-1)}{2}[/tex]
= -1 = -1
donc: I(-1 ; -1)
Pour que MNPQ soit un rectangle il faut que I soit le milieu de [NQ]
donc: Xi=[tex]\frac{ Xn+Xq }{2}[/tex] Yi=[tex]\frac{Yn+Yq}{2}[/tex]
-1 = [tex]\frac{3+Xq }{2}[/tex] -1=[tex]\frac{2+Yq}{2}[/tex]
-1=( [tex]\frac{3+Xq}{2}[/tex]) ×2 -1= ([tex]\frac{2+Yq}{2}[/tex])×2
-1=3+Xq -1=2+Yq
-4= Xq -3=Yq
Q(-4 ; -3)
b) MN= [tex]\sqrt{(Xn-Xm)^2 + (Yn-Ym)^ 2\\}[/tex] NP=[tex]\sqrt{(Xp-Xn)^2+ (Yp-Yn)^2}[/tex]
MN= [tex]\sqrt{(3-(-6))^2+ (2-(-1))^2}[/tex] NP= [tex]\sqrt{(4-3)^2+(-1-2)^2}[/tex]
MN= [tex]\sqrt{9^2+ 3^2\\}[/tex] NP= [tex]\sqrt{(-1)^2+(-3)^2}[/tex]
MN= [tex]\sqrt{81+9}[/tex] NP= [tex]\sqrt{1+9}[/tex]
MN=[tex]\sqrt{90}[/tex] NP= [tex]\sqrt{10}[/tex]
Donc: MN=[tex]\sqrt{90}[/tex] et NP=[tex]\sqrt{10}[/tex]
TanNMP=[tex]\frac{cote oppose}{cote adjacent}[/tex]
TanNMP=[tex]\frac{NP}{MN}[/tex]
TanNMP=[tex]\frac{\sqrt{10}}{\sqrt{90}}[/tex]
TanNMP≅18°
Explications étape par étape
a) MNPQ est un rectangle donc : les diagonales de [MP] et [NQ] ont le même milieu I. I est le milieu de [MP]
b) Il faut calculer les longueurs MN et NP par exemple puis nous utiliserons la tangente car MN est le coté adjacent et NP est le coté opposé.
c) Ils sont calculés dans la question a). Pour la question du cercle il faut le faire a partir du point I et voir si il passe par tous les points.
Si vous voulez pus d'informations dites le moi. Bonne journée
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.