Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Quelqu’un peut m’aider svp??

Quelquun Peut Maider Svp class=

Sagot :

Réponse :

Salut !

1. a. Tu dérives ta fonction pour trouver que g'(x) = 1+1/x > 0, donc g est strictement croissante sur R+.

b. De plus g(1) = 0 (tu peux le vérifier par le calcul), donc g étant croissante, g(x) < 0 quand  x < 1 et g(x) > 0 quand x > 1.

2. a. En 0 tu sais que (x-1)/x = (1-1/x) tend vers - l'infini, de même que ln x.

En + l'infini tu sais que (x-1)/x tend vers 1 et ln x vers + l'infini.

Cf cours pour la réponse à la 2e question.

b. En dérivant tu trouves que

[tex]f'(x) = \frac 1{x^2} \ln x -\frac 1 x + \frac{1}{x^2}[/tex]

Donc je te laisse calculer ce que vaut x²f'(x)...

c. Tu connais le signe de g(x) donc celui de f'(x) qui est le même (x² > 0). A toi de jouer pour le tableau de variations, tu as ce qu'il faut normalement.

Explications étape par étape

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.