Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour Pourriez-vous m'aider s'il vous plaît

Exercice 3:
Le but de cet exercice est de déterminer toutes les fonctions f. définies et dérivables
sur ]0; +l'infini[ , telles que :
V (appartient) x,y E R+*, f(xy) = f(x) + f(y)

Question préliminaire : nommer une fonction connue qui respecte les conditions
précédentes

1) Implication
Supposons d'abord que f est une telle fonction

a) Démontrer que f(1) = 0
Indice : Poser x = 1 y = 1

b) Soit a E R+* et g la fonction définie et dérivable sur R+* par g(x) = f(ax)
Déterminer g'(x) de deux manières différentes
Indice : (g(ax + b)) =
a × g' (ax + b) et
(u(x) + v(x))' = u'(x) + v'(x)

c) En déduire que, V(appartient )x > 0,f'(x) = k/x avec k = f'(1)
Indice : Puisque a peut être fixé, on peut poser que, V (appartient) x > 0, a =1/x

d) En déduire que, V x > 0, f(x) = k× In (x)

e) Pour résumer ce que nous venons de voir, compléter l'implication suivante :

Soit f une fonction définie et dérivable sur ]0; +l'infini[ . Alors :

......................................................→.............................................
2) Existence

Nous voulons ici montrer qu'une telle fonction existe bel et bien
Soit a E R+* et g la fonction définie et dérivable sur R+* g(x) = In (ax)

a) Montrer que, Vx € R+*, g'(x) =1/x
b) En déduire, en dérivant In(x) + In (a), que :
Vx E R+*,In(ax) = In(a) + In(x)​​

Sagot :

Bonjour tu peux poster sur ce site tu as plus de chances d'obtenir une correction ;)

View image Аноним