Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Réponse :
une pyramide régulière de sommet S a pour base le carré. ABCD tel que son volume est égal a 108 cm3. Sa hauteur [SH] mesure 9cm.
1) vérifier que l'aire de ABCD est bien 36cm².
volume(SABCD)=aire(ABCD)*hauteur/3
donc aire(ABCD)=108*3/9=36 cm²
2) En déduire la valeur exacte de AB.
AB²=27 donc AB=√36 donc AB=6 cm
b) Montrer que le périmètre du triangle ABC est égal a 12+6√2 cm.
p=AB+BC+AC
p=2*AB+AC
or AC²=AB²+BC²
donc AC²=2*36=72
donc AC=√72=6√2 cm
alors p=2*6+6√2
donc p=12+6√2 cm
SMNOP est une réduction de la pyramide SABCD.
on obtient alors la pyramide SMNOP telle que l'aire du carré. MNOP soit égal a 4cm².
2) a- calculer le volume de la pyramide SMNOP .
le coefficient de réduction est : k tel que k²=4/36=1/9
donc k=√(1/9)
donc k=1/3
donc le volume de la pyramide est :
V=k³*108=(1/3)^3*108=108/27=4 cm³
b- Anya pense que pour obtenir le périmètre du triangle MNO il suffit de diviser le périmètre du triangle ABC par 3. Etes vous d'accord avec elle?
oui, car k=1/3
donc p(MNO)=1/3*(12+6√2)=4+2√2 cm
Explications étape par étape
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.