Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour j’ai besoin d’aide svp
Devoir à faire pour demain.
J’arrive pas à le faire.
(Je suis en Première)
Merci d’avance


Bonjour Jai Besoin Daide Svp Devoir À Faire Pour Demain Jarrive Pas À Le Faire Je Suis En Première Merci Davance class=

Sagot :

caylus

Réponse :

Bonjour,

Explications étape par étape

[tex]S_0=0\\S_{n+1}=S_n+\dfrac{1}{n+1}- \dfrac{1}{n+2}\\\\1)\\S_0=0\\S_1=S_0+\dfrac{1}{1}-\dfrac{1}{2}\\S_2=S_1+\dfrac{1}{2}-\dfrac{1}{3}\\S_3=S_2+\dfrac{1}{3}-\dfrac{1}{4}\\....\\S_n=S_{n-1}+\dfrac{1}{n}-\dfrac{1}{n+1}\\[/tex]

2)

[tex]S_{n+1}-S_n=\dfrac{1}{(n+1)(n+2)}[/tex]

les racines sont -2 et -1, cette variation est négative entre les racines mais positive à l'extérieur. Elle est donc positive pour n positif.

La suite est croissante.

3)

[tex]S_1=\dfrac{1}{1} -\dfrac{1}{2} \\\\S_2=S_1+\dfrac{1}{2} -\dfrac{1}{3} \\S_2=\dfrac{1}{1} -\dfrac{1}{2} +\dfrac{1}{2} -\dfrac{1}{3} \\\\....\\[/tex]

4)

On additionne membre à membre les égalités de la question 1.

[tex]\displaystyle \sum_{i=1}^n\ S_i=\sum_{j=1}^{n-1}\ S_j+\dfrac{1}{1} -\dfrac{1}{2} +\dfrac{1}{2} -\dfrac{1}{3} +...+\dfrac{1}{n} -\dfrac{1}{n+1} \\\\\\S_n=\dfrac{1}{1} -\dfrac{1}{n+1} \\[/tex]

5)

[tex]0.9999 < S_n\\0.9999 < 1-\dfrac{1}{n+1} \\0.0001 > \dfrac{1}{n+1} \\n+1 > 10000\\n > 9999\\rang=10000\\[/tex]