Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour la question est démontrer que la somme de 4 entier consécutif est toujours pair

Solution : Est ce que quelqu'un peut m'expliquer svp : 1er entier= n
2nd entier= n+1
3ème entier= n+2
4ème entier= n+3
total= n+(n+1)+(n+2)+(n+3)
= 4n+6
= 2x2n+2x3
= 2x(2+3)
= 2n' pair
Sachant que (2n+3) = n' entier


Sagot :

n + n + 1 + n + 2 + n + 3 = 4n + 6 = 2(2n + 3)

Le résultat étant multiple de 2, il est donc pair.

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.