Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour la question est démontrer que la somme de 4 entier consécutif est toujours pair

Solution : Est ce que quelqu'un peut m'expliquer svp : 1er entier= n
2nd entier= n+1
3ème entier= n+2
4ème entier= n+3
total= n+(n+1)+(n+2)+(n+3)
= 4n+6
= 2x2n+2x3
= 2x(2+3)
= 2n' pair
Sachant que (2n+3) = n' entier


Sagot :

n + n + 1 + n + 2 + n + 3 = 4n + 6 = 2(2n + 3)

Le résultat étant multiple de 2, il est donc pair.

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.