Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonsoir,

J'aurais besoin d'aide s'il vous plaît pour ce dernier exercice pour ma grande sœur qui est en Terminale.


Bonsoir Jaurais Besoin Daide Sil Vous Plaît Pour Ce Dernier Exercice Pour Ma Grande Sœur Qui Est En Terminale class=

Sagot :

Réponse :

Bonjour, pour ta grande soeur. (j'en déduis que tu n'es pas en terminale donc  que tu ne peux pas l'aider)

Explications étape par étape

f(x)=1(x²+x-2)

1) f(x) est une fonction quotient  elle n'est donc pas définie par les valeurs de x qui annulent le diviseur (division par 0 impossible)

x²+x-2=0     delta=9  solutions x=-2 et x=1

Df=R-{-2; 1}

2) dérivée: f(x) est de la forme u/v sa dérivée est donc (u'v-v'u)/v²avec

u=1   u'=0

v=x²+x-2   v'=2x+1

f'(x)=-(2x+1)/(x²+x-2)²=(-2x-1)/(x²+x-2)

f'(x)=0 pour (-2x-1)=0  soit  x=-1/2

si x<-1/2, f'(x)>0 et si x>-1/2, f'(x)<0

3)limites aux bornes du domaine

si x tend vers -oo f(x) tend vers 0+

si x tend vers -2(avec x<-2), x² est>4 donc x²+x-2 tend vers 0+ et f(x) tend vers +oo

si xtend vers -2  (avec x>-2)  x² est<4 donc x²+x-2 tend vers 0-  et f(x) tend vers -oo

si x tend vers 1 (avec x<1)   x² est<1donc x²+x-2 tend vers 0- et  f(x) tend vers -oo

si xtend vers1 (avecx>1) x² est>1 donc x²-x-2 tend vers 0+ et f(x) tend vers +oo

si x tend vers+oo f(x) tend vers 0+

On note que la droite y=0 est une asymptote horizontale et les droite x=-2 et x=1 sont des asymptotes verticales

4)tableau de signes de f'(x) et de variations de f(x)

x       -oo                          -2                  -1/2                      1                      +oo

f'(x)...................+..................II.......+...............0........-.................II.........-...............

f(x)..0+............C...........+ooII-oo......C.......-9/4.....D..........-ooII+oo.......D.........0+

f(-1/2)=(-1/2)²-1/2-2=1/4-1/2-2=-9/4

II=valeurs interdites  pur lesquelles f(x) et f'(x) ne sont pas définies

C=croissante et D=décroissante

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.