Réponse :
ex32
factoriser les expressions suivantes
A = x(x - 4) - 5(4 - x)
= x(x - 4) - 5(- x + 4)
= x(x - 4) - 5(- (x - 4))
= x(x - 4) + 5(x - 4)
= (x - 4)(x + 5)
B = (2 x - 3)(1 - x) - 3(x - 1)(x + 2)
= (2 x - 3)(1 - x) - 3((- 1 + x)(x + 2)
= (2 x - 3)(1 - x) - 3(- (1 - x))(x + 2)
= (2 x - 3)(1 - x) + 3(1 - x)(x + 2)
= (1 - x)(2 x - 3 + x + 2)
= (1 - x)(3 x - 1)
C = (2 x - 3)(1 - x) + 3(x - 1)(x + 2)
= (2 x - 3)(1 - x) + 3((- 1 + x)(x + 2)
= (2 x - 3)(1 - x) + 3(- (1 - x))(x + 2)
= (2 x - 3)(1 - x) - 3(1 - x)(x + 2)
= (1 - x)(2 x - 3 - x - 2)
= (1 - x)(x - 5)
D = 2 x - 3 + (3 - 2 x)²
= (2 x - 3) + (- 2 x + 3)²
= (2 x - 3) + (- (2 x - 3))²
= (2 x - 3) + (2 x - 3)²
= (2 x - 3)(1 + 2 x - 3)
= (2 x - 3)(2 x - 2)
= 2(2 x - 3)(x - 1)
Explications étape par étape