Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour j’aurais besoin d’aide sur un exercice sur les suites niveau première.

Un=n^2-10n

Conjecturer la limite éventuelle de la suite (Un) lorsque n tend vers +infini.

Déterminer le sens de variation de la suite (Un) , et validé la conjectures .

merci d’avance


Sagot :

Réponse :

Explications étape par étape

Conjectures:

lim (Un) quand n tend vers + infini = + infini

La suite semble croissante pour n >=5

Validation des conjectures:

lim Un = lim n²(1-10/n)

lim 10/n=0

lim 1-10/n=1

lim n²= +infini

et donc lim Un = + infini

On calcule Un+1 - Un

= (n+1)²-10(n+1) - n² + 10 n

= n²+2n+1 -10n - 10 - n² + 10n

= 2n-9

Un+1 - Un >0 pour 2n-9>0 soit n >9/2

et comme n entier soit à partir de n >= 5

Donc Un est croissante à partir de n>=5