Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour, es que quelqu'un pourait m'aider pour mon exercice ? ABC est un rectangle équilatérale de coté 12cm et i le milieu du segment [AB]. M est un point varible du segment [Ai] et N le piont du segment [AB] distinct de M tel que AM=NB. Q est le point du segment [BC] et P est le point du segmen [AC] tels que MNQP soit un rectangl. On note f la fonction qui à x=AM(en cm) associe l'aire, en cm² , du rectangle MNQP. a) Quel est l'enssemble de définition de f ? b) Exprimer MN, puis MP en fonction de x. En déduire l'expression algébrique de f (x) c) Calculer f (3), puis vérifierque pour tout x de [0;6[: f (x) -f (3)= -2 √3 (x-3)² d) En deduire que f(3) est le maximum de f sur [0;6[. e)Qelles sont les dimensions du rectangle d'aire maximale?



Sagot :

a) x € [0,6]

b) MN = 12-2x

CI= rad(144-36) = 10,39

on a une configuration de Thalès AMI et APC avec les // MP et CI

donc MP/CI = x/6 et MP = (10,39/6).x ou rad(3)x

f(x) = MN.MP = (12-2x).rad(3).x = -2rad(3)x²+12rad(3)x

c) f(3) = -18rad(3) + 36rad(3) = 18rad(3)

f(x) - f(x) =-2rad(3)x²+12rad(3)x -18rad(3) = -2rad(3)(x² -6x + 9) = -2rad(3)(x-3)²

d) f(3) est le maximum de f(x) sur [0,6] parce que la plus petite valeur possible de (x-3)² est 0 et est atteinte qd x = 3

le dimensions du rectangle d'aire maximale sont: MN = 12-6=6 et MP = 3rad(3)

voilà Chloé,bonne soirée

 

 

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.