Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse : Bonjour,
1) Il suffit de calculer la moyenne de l'échantillon:
[tex]\displaystyle \mu=\frac{15+34+23+18+22+21+25+28+14+17+20+16+19+24+29+21+26+30}{20}\\+\frac{13+11}{20}=\frac{426}{20}=21,3[/tex]2) L'intervalle de confiance de [tex]\mu[/tex], au risque 5% est:
[tex]\displaystyle \left[\overline{x}-t_{0,025}^{19} \frac{s}{\sqrt{20}}; \overline{x}+t_{0,025}^{19} \frac{s}{\sqrt{20}}\right][/tex]
Il nous faut calculer l'écart-type [tex]s[/tex], de l'échantillon observé:
[tex]\displaystyle s^{2}=\frac{(15-21,3)^{2}+(34-21,3)^{2}+(23-21,3)^{2}+(18-21,3)^{2}+(22-21,3)^{2}}{19} \\ +\frac{(21-21,3)^{2}+(25-21,3)^{2}+(28-21,3)^{2}+(14-21,3)^{2}+(17-21,3)^{2}}{19} \\ +\frac{(20-21,3)^{2}+(16-21,3)^{2}+(19-21,3)^{2}+(24-21,3)^{2}+(29-21,3)^{2}}{19} \\ + \frac{(21-21,3)^{2}+(26-21,3)^{2}+(30-21,3)^{2}+(13-21,3)^{2}+(11-21,3)^{2}}{19}=\frac{720,2}{19} \approx 37,9[/tex]
On a [tex]t_{0,025}^{19}=2,093[/tex].
Donc l'intervalle recherché est:
[tex]\displaystyle \left[21,3-2,093 \frac{\sqrt{\frac{720,2}{19}}}{\sqrt{20}}; 21,3+2,093 \frac{\sqrt{\frac{720,2}{19}}}{\sqrt{20}} \right] \approx [18,42; 24,18][/tex]
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.