Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

S’il vous plaît aidez moi
1. Tracer un segment [AB] de longueur 9 cm et de
milieu l. Placer un point P sur la médiatrice du segment [AB] et à 7,5 cm de A.
Calculer la longueur IP.
2. Construire le symétrique A' du point A par rapport au point P.
Que peut-on dire des droites (Pl) et (A'B) ? Justifier.
3. Calculer la longueur A'B de deux façons différentes.

Sagot :

Réponse :

1)

trouves ci dessous la construction de la figure.

On calcul la longueur IP tel que:

Comme la médiatrice (IP) du segment [AB] alors (IP) ⊥ [AB] en I.

on en en déduit que le triangle AIP est rectangle en I

alors on applique l'égalité de Pythagore soit:

AP² = IP² +IB²

or IB = 1/2AB car I milieu du [AB]

alors IP² = AP² - (1/2AB)²

par conséquent IP² = (7.5)² - (1/2x9)² =  36

donc on a IP = √36 or IP est une longueur, alors IP >0

Par conséquent IP = 6 cm

2)

voir construction du point A' sur la figure ci dessous

les droites (PI) et (A'B) sont elles parallèles?

comme les points A',P, A d'une part et B,I,A d'autre part sont alignés dans le même ordre. On verifie si PA/A'A = IA/BA

PA/A'A = PA/(2 x PA)  

car propriété symétrie centrale  de A par rapport à P, donc A'A  = 2 x PA

alors PA/A'A = 1/2

IA/BA = (AB/2) / BA  car I milieu de [AB]  donc IA = IB

alors  IA/BA = 1/2

donc on a bien PA/A'A = IA/BA

Par conséquent les droites (PI) et (A'B) sont parallèles.

3) calcul de la longueur A'B

1ere façon: on utilise l'égalité de Thalès

soit PA/A'A = IA/BA = PI/A'B

alors on en déduit que PI/A'B = 1/2 or PI = 6 cm  voir réponse au 1).

donc on a A'B = 2 x PI = 2 x 6 = 12 cm

2eme façon: on utilise l'égalité de Pythagore dans le triangle A'BA rectangle en B

soit A'A² = A'B² + AB²

alors A'B² = A'A² - AB² = (2xA'P)² - AB²      

or A'A=2xA'P. Car P milieu [A'A], la symétrie centrale de A par rapport à P.

donc A'B² = (2x7.5)² - 9² = 15² - 9²=144

par conséquent A'B = √144 or A'B est une longueur alors A'B >0 donc

A'B = 12 cm

j'espère avoir pu aider                            

View image hamelchristophe
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.