Answered

Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

PROBLÈME Les parents de Charlotte souhaitent l’inscrire dans le club d’équitation le plus proche de chez eux. Le club leur propose trois formules différentes : • Formule A : 18 ( la séance. • Formule B : 165 ( par carte de 10 séances. • Formule C : Paiement d’une cotisation annuelle de 70 ( plus 140 ( par carte de 10 séances. Partie 1 1. Vérifier que le coût pour 7 séances est de 126 ( pour la formule A, 165 ( pour la formule B et 210 ( pour la formule C. 2. Calculer le coût de 20 séances pour ces trois formules. Quelle est la formule la plus avantageuse dans ce cas ? Partie 2 Charlotte désirant faire du cheval toute l’année, ses parents décident de comparer les formules B et C. 1. Reproduire et compléter le tableau suivant sur votre copie. Aucune justification n’est demandée. 1 carte 2 cartes 5 cartes PRIX Formule B Formule C 2. Soit x le nombre de cartes de 10 séances achetées. a. Exprimer en fonction de x le coût pour la famille si elle choisit la formule B. b. Exprimer en fonction de x le coût pour la famille si elle choisit la formule C. c. Résoudre l’inéquation suivante 140x +70 6 165x. d. À partir de combien de cartes achetées, la formule C devient-elle avantageuse ? Partie 3 1. Dans le repère, fourni en annexe, construire les représentations graphiques des fonctions f et g définies par : f : x 7−→165x (Prix avec la formule B) ; g : x 7−→140x+70 (Prix avec la formule C). 2. Dans cette question, on fera apparaître les tracés utiles en pointillés. Retrouver graphiquement le nombre de cartes à partir duquel la formule C devient avantageuse.

Sagot :

Bonsoir,

Formule A : 18€ la séance
Formule B : 165€ (Carte de 10 séances)
Formule C : 70€ + 140 (carte de 10 séances)

Partie 1 :

1) vérifier pour 7 séances :

Formule A : 7 * 18 = 126 €
Formule B : 165€ (carte de 10 séances)
Formule C : 70 + 140 (carte de 10 séances) = 210€

2) pour 20 séances :

Formule A : 20 * 18 = 360€
Formule B : 165 * 2 = 330€
Formule C : 70 + 2 * 140 = 350€

La plus avantageuse est la formule B.

Partie 2 :
1) compléter :

Formule B :
1 carte : 165 €
2 cartes : 165 * 2 = 330 €
5 cartes : 165 * 5 = 825 €

Formule C :
1 carte : 70 + 140 = 210 €
2 cartes : 70 + 2 * 140 = 350 €
5 cartes : 70 + 5 * 140 = 770 €

b) exprimer en fonction de x :

x : nombre de cartes de 10 séances

Formule B : 165x
Formule C : 70 + 140x

C) résoudre :

140x + 70 < 165x
165x - 140x > 70
25x > 70
x > 70/25
x > 2,8

A partir de 3 cartes la formule C devient la plus avantageuse



Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.