Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Je suis désolée ca va faire 2 jours que je suis sur le meme exo donc je pose toujours le meme genre de question sur les vecteurs. J'ai un grand besoin d'aide!!! A B C D M quetre points quelconques d'un plan. 1) Déterminer l'ensemble des points M tels que vecMA + vecMB et vecMC - vecMD sont colineaires 2) Déterminer l'ensemble des points M tels que ||vecMA + vecMB|| = ||vecMC - vecMD||



Sagot :

pour faire somme et différence de vecteurs,

on se base sur un parallélogramme ABCD :
si on pose v(AB)=v(DC)=u et v(AD)=v(BC)=v

alors la somme VECTORIELLE u+v est le vecteur w donc v(AC) est un représentant, et la différence VECTORIELLE u-v est le vecteur z dont DB est un représentant.

Chasles dit ça : 1e) v(AB)+v(BC)=v(AC) et 2e) v(AD)-v(AB)=v(DB)

(il y 2 relations de Chasles, pas une seule)

On retient la propriété des //logrammes : diagonales se coupent en leur milieu, par l'égalité v(AB)+v(AC)=2*v(AI) avec I milieu de AB
Ainsi v(MC)+v(MD) c'est 2*v(MI) I milieu de CD

et vecMA-vecMB c'est v(BA)
la colinéarité demandée donnée c'est v(MI) colineaire à BA donc M sur la droite // à (AB) passant par I, milieu de CD : c'est (CD) !

||v|| c'est la longueur du vecteur v donc on demande que 2*MJ=DC avec J milieu de AB : cercle de centre J de rayon AB/2 : cercle de diametre AB

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.