Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
1) calculer n² + n + 1 en fonction de k
on suppose n est paire ⇔ n = 2 k avec k ∈ Z
n² + n + 1 = (2 k)² + 2 k + 1 = 4 k² + 2 k + 1
en déduire que si n est pair , n² + n + 1 est impair
n est pair donc n² + n + 1 = 4 k² + 2 k + 1 = 2(2 k² + k) + 1
on pose k' = 2 k² + k or (2 k² + k) ∈ Z donc k' ∈ Z
n² + n + 1 = 2 k' + 1 donc n² + n + 1 est impair
2) calculer n² + n + 1 en fonction de k
on suppose n impair ⇔ n = 2 k + 1 , k ∈ Z
n² + n + 1 = (2 k + 1)² + 2 k + 1 + 1 = 4 k² + 4 k + 1 + 2 k + 1 + 1
= 4 k² + 6 k + 3
en déduire que si n est impair , n² + n + 1 est impair
n² + n + 1 = 4 k² + 6 k + 3 = 4 k² + 6 k + 2 + 1 = 2(2 k² + 3 k + 1) + 1
on pose k' = 2 k² + 3 k + 1 or 2 k² + 3 k + 1 ∈ Z donc k' ∈ Z
donc n² + n + 1 = 2 k' + 1 est impair
Explications étape par étape
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.