Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Bonjour,
1. Nous allons développer Q(x) et utiliser le théroème.
[tex]Q(x)=x^2+2\alpha \times x + \alpha^2+\beta[/tex]
Par identification des coefficients des nonômes ons
1 = 1
[tex]3=2\alpha[/tex]
[tex]-5 = \alpha^2+\beta[/tex]
ça donne donc
[tex]\alpha=\dfrac{3}{2}\\\\\beta=-5-\dfrac{9}{4}=\dfrac{-20-9}{4}=\dfrac{-29}{4}[/tex]
Pour résoudre P(x)=0 nous allons utiliser Q(x)
[tex]P(x)=0 <=> Q(x)=0\\ \\<=> (x+\dfrac{3}{2})^2=\dfrac{29}{4} \\\\<=> x = -\dfrac{3}{2}\pm \dfrac{\sqrt{29}}{2}[/tex]
2.
[tex]P(x)=x^5-2x^4-2x^3+4x^2+x-2\\\\P(2)=32-32-16+16+2-2=0[/tex]
2 est donc une racine et on peut factoriser par (x-2)
[tex]P(x)=x^5-2x^4-2x^3+4x^2+x-2=(x-2)(x^4-2x^2+1)=(x-2)(x^2-1)^2[/tex]
Donc les solutions de P(x)=0 sont
2, 1 et -1
Merci
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.