Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

bonjour à tous j'aimerai que quelqu'un m'aide svp , j'ai beaucoup de mal. niveau 3e
Le point A est equidistant des points B et C
Donc le point A...... à la ........
du segment BC.
Le point M est .....du segment [BC],
Donc le point M...... à la..... du....
[BC]
La droite (AM) ..... deux points
de la ......... du ... (BC).
Donc la droite (AM) est la.....du segment
[BC]
Or, la médiatrice d'un segment est la ......... au
segment qui ..... par le...... du
du ........
Donc (AM)... (BC)
Les points B, M et C sont .........
Donc les droites (BM) et (BC) sont confondues.
Donc (AM)... (BM)
Donc le triangle ABM est ...... en ....
déterminer la valeur exacte de la longueur am si le triangle. abc a pour côté 12 .​


Bonjour À Tous Jaimerai Que Quelquun Maide Svp Jai Beaucoup De Mal Niveau 3eLe Point A Est Equidistant Des Points B Et CDonc Le Point A À La Du Segment BCLe Poi class=

Sagot :

Réponse :

Explications étape par étape :

Le point A est équidistant des points B et C

Donc le point A appartient à la Médiatrice du segment [ BC ] .

Le point M est le Milieu du segment [BC],

Donc le point M appartient à la Médiatrice du segment [ BC ] .

Ton texte "La droite (AM) ..... deux points de la ......... du ... (BC)."

est bizarre --> je me suis permis de le modifier :

La droite (AM) est équidistante des extrémités B et C du segment [ BC ] .

Donc la droite (AM) est la Médiatrice du segment [BC] .

Or, la médiatrice d'un segment est la perpendiculaire au

segment qui passe par le Milieu du du segment .

Donc (AM) (BC)

Les points B, M et C sont alignés

Donc les droites (BM) et (BC) sont confondues.

Donc (AM) (BM)

Donc le triangle ABM est rectangle en M

déterminer la valeur exacte de la longueur AM si le triangle ABC a pour côté 12 cm --> AM² = 12² - 6² = 144 - 36 = 108 = (6√3)² donc AM = 6√3 ( valeur exacte ) ≈ 10,4 cm ( valeur arrondie ) .​

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.