Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.


Bonjour svp c’est important est il possible de le faire avec tout les calculs en détails sinon je ne comprends pas

Exercice
On se place dans un repère orthonormé. On considère la droite (d) d'équation 4x + 7y + 10 = 0.
1. Montrer que les points A(-6;2) et B(1;-2) appartiennent à (d).
2. Déterminer une équation cartésienne de la droite (d') parallèle à (d) passant par C(2,16).
3. Déterminer une équation
cartésienne de la droite (d") perpendiculaire à (d) passant par B.
4. Résoudre le système suivant :
4x + 7y - 120 = 0
-7x + 4y + 15 = 0
5. En déduire les coordonnées du point d'intersection D de (d') et (d").
6. Déterminer un vecteur directeur de (AC).
7. Montrer que le quadrilatère ABDC est un rectangle.


Sagot :

Réponse :

Explications étape par étape

Exercice

On se place dans un repère orthonormé. On considère la droite (d) d'équation 4x + 7y + 10 = 0.

1. Montrer que les points A(-6;2) et B(1;-2) appartiennent à (d).

A(x=-6 ; y= 2)   4(-6)  +7(2)  + 10 = -24  + 14 +10 = 0  

B(  1; - 2)    4(1)   + 7(-2)   +  10 =  4 -14  + 10  =  0

2. Déterminer une équation cartésienne de la droite (d') parallèle à (d) passant par C(2,16).

(d')    4x + 7y + p = 0.  

C ( x= 2 ; y = 16)             4(2) +7(16) + p=0  

 8  + 112 + p= 0  

 p = -120

(d')    4x + 7y   -120  = 0.  

3. Déterminer une équation

cartésienne de la droite (d") perpendiculaire à (d) passant par B.

(d")    -7x +4y  + p=0  

B(  1; - 2)     -7(1)   + 4(-2)  + p=0  

        -7-8 + p= 0  

p = 15  

(d")    -7x +4y  + 15=0  

4. Résoudre le système suivant :

4x + 7y - 120 = 0              4x = 120  -7y           28x = 840  - 49y

-7x + 4y + 15 = 0               7x = 4y +15              28x = 16y  + 60

donc         16y +60 =  840 -49y

16y + 49y = 840 -60

65 y =     780             y=780/65   =  12  

4x =120 - 7(12)=  36   donc     x = 36/4 =9            

5. En déduire les coordonnées du point d'intersection D de (d') et (d").

D( 9 ;12 )  car    4x + 7y - 120 = 0    est   (d')  et   -7x + 4y + 15 = 0 est (d")

6. un vecteur directeur de (AC). est AC ( 2 - (-6)  ;  16  - 2)    AC ( 8; 14)

7. Montrer que le quadrilatère ABDC est un rectangle.

(AB) est  (d)   d'aprés  1.

(CD) est (d')   d'aprés   2. et  5  

or  (d) // (d')  

(BD)  est  (d")  d'aprés  3 et 5  et   (d)⊥(d")

de plus   un vecteur directeur de (d")  est   ( 7;4)   soit   1/2 AC ( 8;14)

ce qui prouve que  (AC) // (BD)

on en deduit que ABDC  est un rectangle

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.