Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
1. Montrer que PM= 3/4x. --> utilise le théorème de Thalès
2. Montrer que le périmètre du rectangle APMQ est égal à 8-x/2. --> Ton périmétre c'est PM + MQ + QA + AP, vu que c'est un rectangle c'est aussi 2 PM + 2 AP avec PM = 3x/4 et AP = 4 - x.
3. Est-il possible de placer M sur (BC) pour que le périmètre du rectangle APMQ soit égal à: 7cm? 4cm? 10cm? --> Tu égalise 8 - x/2 avec tes trois valeurs et tu regardes les valeurs de x que tu obtiens si x > 4 alors tu ne peux pas placer P sur AB donc M sur BC non plus.
PARTIE B:
1.a. Calculer la longueur BC. (J'ai déjà fai cette question, je trouve 5cm). --> Bien joué
b. Montrer que BM= 5x/4. --> Encore Thalès
2. En déduire, en fonction de x , le périmetre du triangle BPM. --> Tu as BP, PM et BM en fonction de x donc c'est une simple somme...
A toi de jouer
1) théorème de Thales
APMQ rectangle==> (AC)//(MQ)
PM/AC=BP/AB
PM=AC*(BP/AB)=3*(x/4)=(3/4)x
2)P point de [BA]
BP+PA=BA
PA=BA-BP=4-x
peimètre de APMQ=2(AP+PM)=2(4-x+(3/4)x)=8-2x+(3/2)x)=8-(4/2)x+(3/2)x=8-(x/2)
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.